Aluminum tolerance in maize is associated with higher MATE1 gene copy number.

نویسندگان

  • Lyza G Maron
  • Claudia T Guimarães
  • Matias Kirst
  • Patrice S Albert
  • James A Birchler
  • Peter J Bradbury
  • Edward S Buckler
  • Alison E Coluccio
  • Tatiana V Danilova
  • David Kudrna
  • Jurandir V Magalhaes
  • Miguel A Piñeros
  • Michael C Schatz
  • Rod A Wing
  • Leon V Kochian
چکیده

Genome structure variation, including copy number variation and presence/absence variation, comprises a large extent of maize genetic diversity; however, its effect on phenotypes remains largely unexplored. Here, we describe how copy number variation underlies a rare allele that contributes to maize aluminum (Al) tolerance. Al toxicity is the primary limitation for crop production on acid soils, which make up 50% of the world's potentially arable lands. In a recombinant inbred line mapping population, copy number variation of the Al tolerance gene multidrug and toxic compound extrusion 1 (MATE1) is the basis for the quantitative trait locus of largest effect on phenotypic variation. This expansion in MATE1 copy number is associated with higher MATE1 expression, which in turn results in superior Al tolerance. The three MATE1 copies are identical and are part of a tandem triplication. Only three maize inbred lines carrying the three-copy allele were identified from maize and teosinte diversity panels, indicating that copy number variation for MATE1 is a rare, and quite likely recent, event. These maize lines with higher MATE1 copy number are also Al-tolerant, have high MATE1 expression, and originate from regions of highly acidic soils. Our findings show a role for copy number variation in the adaptation of maize to acidic soils in the tropics and suggest that genome structural changes may be a rapid evolutionary response to new environments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of mitochondrial DNA copy number in peripheral blood leukocyte of opiate abusers and healthy individuals

Background: Based on the studies, variation in the mitochondrial DNA (mtDNA) copy number in peripheral blood leukocytes is associated with increased susceptibility to diseases including cancer. Opiate abusers are at high risk for diseases. In this study, we measured the mtDNA copy number in peripheral blood leukocytes in a group of opiate abusers compared with those in healthy individuals. Met...

متن کامل

Agrobacterium Mediated Transformation of Maize (Zea mays L.)

Agrobacterium tumefaciens mediated transformation may offer a better alternative than the biolistic gun for genetic transformation of maize plants. This gene delivery system results in a greater proportion of stable, low-copy number transgenic events than does the biolistic gun, and is highly efficient. In the present work, we studied maize transformation using A. tumefaciens by identifying som...

متن کامل

Improved salt tolerance in canola (Brasica napus) plants by overexpression of Arabidopsis Na+/H+ antiporter gene AtNHX1

A significant portion of the world’s cultivated land is affected by salinity that reduces crop productivity in these areas. Breeding for salt tolerance is one of the important strategies to overcome this problem. Recently, genetic engineering is becoming a promising approach to improving salt tolerance. In order to improve the yield performance of canola in saline soils, we transformed canola w...

متن کامل

Network-based transcriptome analysis in salt tolerant and salt sensitive maize (Zea mays L.) genotypes

Identification of genes involved in salinity stress tolerance provides deeper insight into molecular mechanisms underlying salinity tolerance in maize. The present study was conducted in the faculty of agriculture of Urmia university, Iran, in 2018, with the aim of identifying genetic differences between two maize genotypes in tolerance to salinity stress, and the results of gene expression wer...

متن کامل

Evaluation of Water Deficit Tolerance Indices in New Hybrids of Maize (Zea mays L.) with SIMMYT Origin

Regarding the insufficient water resources, developing of cultivars with high tolerance to water deficit can be very effective to optimize water consumption. To identify maize hybrids with higher tolerance to water deficit, 52 single cross hybrids were field evaluated according to a randomized complete block design with three replications in each irrigation regime. The hybrids were produced thr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 13  شماره 

صفحات  -

تاریخ انتشار 2013